2021/22 シーズンのインフルエンザ治療・予防指針

-2021/22 シーズンの流行期を迎えるにあたり-日本小児科学会 予防接種・感染症対策委員会

2021/22 シーズンの流行期を迎えるにあたり、治療指針を更新し、治療・予防指針といたしましたのでお知らせいたします。

手洗いや手指衛生、マスク着用や咳エチケット、「密閉空間」・「密集場所」・「密接場面」という「3つの密」の回避が COVID-19 対策として奨励されていますが、これらの対策はインフルエンザの予防にも有効です。

治療・予防指針の主な改訂点は以下になります。

- ① 一般診療における治療を更新しました。治療薬に関して、大きな方針の変更 はありませんが、バロキサビルマルボキシルに関する新たな知見について、 追記しています。
- ② インフルエンザワクチンに関して、新型コロナウイルス感染症の流行をふまえた接種時の注意点を追記しました。

1. 一般診療における治療

<現時点での外来治療における対応>

季節性インフルエンザに対する抗インフルエンザ薬の有効性に関する知見は、有熱期間の短縮のほか、抗インフルエンザ薬の早期投与による重症化予防効果が示されている ¹⁻ ³。引き続き、以下の考え方を継続する。

治療対象について

- ・ 幼児や基礎疾患があり、インフルエンザの重症化リスクが高い患者や呼吸器症状 が強い患者には投与が推奨される。
- ・ 発症後 48 時間以内の使用が原則であるが、重症化のリスクが高く症状が遷延する 場合は発症後 48 時間以上経過していても投与を考慮する。
- ・ 基礎疾患を有さない患者であっても、症状出現から 48 時間以内にインフルエンザ と診断された場合は各医師の判断で投与を考慮する。
- ・ 一方で、多くは自然軽快する疾患でもあり、抗インフルエンザ薬の投与は必須ではない。

選択薬について

オセルタミビル (タミフル®) ザナミビル (リレンザ®) ラニナミビル (イナビル®) ペラミビル (ラピアクタ®) バロキサビル マルボキシル (ゾフルーザ®)

表1. 抗インフルエンザ薬

	オセルタミビル	ザナミビル ***	ラニナミビ ル ** *	ペラミビル	バロキサビル マルボキシル	
新生児·乳児(1 歳未満)	推奨*	吸入困難と	吸入困難と	懸濁液は吸 入可能、推奨		
幼児(1歳から4歳)	推奨	考える	については 本文参照			
小児 (5歳から9歳)	推奨	場合に限る(感染対策に注 使用が困難 ては 意が必要) な時に考慮		推奨につい ては本文を 参照		
10 歳以上**	推奨	推奨(感染対策に注意が必 要)		する。	> ///	
呼吸器症状が強い・呼 吸器疾患のある場合	推奨	要注意				

- *) 平成29年3月24日に公知申請により承認されたオセルタミビルの投与は生後2週以降の新生児が対象である。体重2500g未満の児または生後2週未満の新生児は使用経験が得られていないため、投与する場合は、下痢や嘔吐の消化器症状やそのほかの副作用症状の発現に十分注意する⁴。原則、予防投与としてのオセルタミビルは推奨しない(海外でも予防投与については1歳未満で検討されていない)。ただし、必要と認めた場合に限り、インフォームドコンセントのもと予防投与(予防投与量:2mg/kgを1日1回、10日間内服)を検討する⁴。
- **)抗インフルエンザ薬投与の有無に関わらず、就学期以降の小児・未成年者には、異常行動などについて注意を行った上で投与を考慮し、少なくとも発熱から2日間、保護者等は異常行動に伴って生じる転落等の重大事故に対する防止対策を講じること、について患者・家族に対し説明を行うことが必要である。平成30年日本医療研究開発機構(AMED)研究班の検討によりインフルエンザ罹患後の異常行動がオセルタミビル使用者に限った現象ではないと判断し、全ての抗インフルエンザ薬の添付文書について副作用の項に「因果関係は不明であるものの、インフルエンザ罹患時には、転落等に至るおそれのある異常行動(急に走り出す、徘徊する等)があらわれることがある。」と追記している。
- ***) 吸入薬 (ザナミビルやラニナミビル) 使用時はせき込みなどが想定される。吸入 指導を行う際は、COVID-19の共感染等を考慮し適切な感染対策が必要である。

ラニナミビル懸濁液「イナビル吸入懸濁用160mgセット」が2019年6月に承認され、使用可能である((注) ラニナミビル吸入粉末薬とは異なる製剤)。同薬は、吸入粉末薬を吸入できない乳幼児に投与が可能というメリットはあるが、現状では乳幼児に対する十分なデータがないこと、また、エアロゾルを発生する危険性から、現時点では推奨しない。

吸入実施時における具体的な感染対策については以下を参照のこと。

国立感染症研究所: https://www.niid.go.jp/niid/ja/corona-virus/2019-ncov/9310-

2019-ncov-1.html

日本環境感染学会:

http://www.kankyokansen.org/modules/news/index.php?content_id=328

<入院治療における対応>

原則として全例、抗インフルエンザ薬による治療を推奨する。経口投与が可能であれば 幼児はオセルタミビルの投与が推奨されるが、経口投与が困難な場合はペラミビル点滴 静注が考慮される。呼吸器の基礎疾患や肺炎のない年長児においては、確実に吸入投与が可能な場合に限りザナミビルやラニナミビルが選択される。集中治療管理が必要となるような重症例および肺炎例に対して使用経験の最も高い薬剤はオセルタミビルになるが、経口投与が困難な場合はペラミビルの静注投与が推奨される。

新生児·乳児

オセルタミビル (タミフル®) 生後 2 週以降の新生児と乳児の適応ありペラミビル (ラピアクタ®) 生後 1 か月以降の乳児の適応あり

重症例および肺炎合併例

オセルタミビル (タミフル®) ペラミビル (ラピアクタ®)

それ以外の入院患者に対しては

オセルタミビル (タミフル®) ザナミビル (リレンザ®) ラニナミビル (イナビル®) ペラミビル (ラピアクタ®)

<バロキサビル マルボキシルについて>

バロキサビル マルボキシル (ゾフルーザ®) は、インフルエンザウイルス特有の酵素であるキャップ依存性エンドヌクレアーゼの活性を選択的に阻害する。ウイルスの mRNA 合成を阻害し、インフルエンザウイルスの増殖を抑制する新しい作用機序の抗インフルエンザ薬として 2018 年 2 月から製造販売承認を受けている 5。

バロキサビル マルボキシル (以下同薬) の抗ウイルス作用や臨床的効果については、インフルエンザに罹患した 12 歳以上の健常な小児および成人を対象としたランダム化比較試験が 2018 年に報告され、同薬はオセルタミビルと同様の有効性と安全性が確認されている 5。以降、12 歳未満の小児に関する治験や臨床研究の結果が報告され、概ねノイラミニダーゼ阻害薬と同程度の効果や安全性が示されている 67。

小児および成人を対象とした 26 の試験 (11897 例)を検討としたシステマティックレビューおよびネットワークメタアナリシスによると、インフルエンザ罹病期間についてはザナミビル投与群が最も短かったものの、同薬はインフルエンザ関連合併症 (肺炎、気管支炎、中耳炎、その他)の発生率および有害事象 (嘔気、嘔吐)の発生率が最も低かったことが示されている 8。更に小児を含む 339,007 人の健康保険組合のデータベースを用いた検討では、同薬投与群はオセルタミビルやザナミビル投与群より入院の頻度が低いことが確認されている 9。また、B型インフルエンザウイルスに対する同薬の効果については、ノイラミニダーゼ阻害薬に比べて、有熱期間が比較的短いとの報告も散見される 7。更に、予防投与は小児を含む家族内感染を減らす効果も示されている 10。上記のデータは、同薬についてはノイ

ラミニダーゼ阻害薬と同等以上の臨床的有用性を示唆するものである。

しかしながら、治療中にインフルエンザウイルスのポリメラーゼの PA サブユニットにおける I38X 変異を有する耐性ウイルスが出現することは繰り返し確認されている $^{6,11-13}$ 。変異ウイルスは主として A (H3N2)、A (H1N1) で検出されている。2016/17 シーズンに行われた治験における検討では治療後 3-9 日に 9.7%の患者検体で変異ウイルスが検出され、85.3%はウイルス量の一過性の増加が認められ、症状の増悪も 10%前後に認められている 13 。販売前の変異ウイルスによる検討や野生株との競合実験では、増殖能が低下しているため理論上は広く伝播するリスクは低いと考えられていたが、その後のマウスの競合感染実験においては、野生株と同等であることも報告されている 14 。フェレット感染モデルを用いた検討で、増殖能は劣るものの伝播能は保たれることが確認されている 15 。また治療歴のない小児患者からの検出が報告され 12 $^{(13)}$ 、変異ウイルスの家族内伝播例も国内より報告されるなど不安材料が残る状況である 16 。

2019-20 シーズンにインフルエンザに罹患した 15 歳未満の患者における検討で、同薬投与を行った 20 例中 5 例に耐性ウイルスが検出され、有熱期間は変異ウイルス検出の有無で有意差はなかったものの(変異なし 23.0hr vs 変異あり 32.5hr)、ウイルス排泄の遷延や症状スコア改善までの時間は長い傾向にあった(変異なし 29.5hr vs 変異あり 75.0hr, p=0.106)
17。同報告は少数例の検討であり、変異ウイルスが全体の疫学に与える影響は不明である。

上記のように、同薬の使用経験と有効性は集積され、一部他の薬剤に対する優位性を示唆するデータもある。しかし、小児に特化した検討は少なく、薬剤耐性ウイルスの出現が認められる。当委員会では今後の更なるデータの蓄積と検証が望ましいと考え、現時点では12歳未満の小児に対する同薬の積極的な投与を推奨しない。特に、免疫不全患者では耐性ウイルスの排泄が遷延する可能性があり同薬を単剤で使用すべきではないと考える。ただし、ノイラミニダーゼ阻害薬耐性株が疑われる状況では、使用が考慮される。なお、重症例・肺炎例については他剤との併用療法も考慮されるが、当委員会では十分なデータを持たず、現時点では検討中である。

2. 抗インフルエンザ薬による予防投与に関する考え方

インフルエンザの予防については、あくまでもワクチン接種やマスク着用・手洗いなどの対策が基本である。抗インフルエンザ薬による予防投与については、病院内における集団発生やインフルエンザ重症化リスクのある基礎疾患のある患者が曝露を受けた状況においてのみ考慮される。やむを得ず使用する場合は、原則としてノイラミニダーゼ阻害薬を使用する。バロキサビル マルボキシルの使用はノイラミニダーゼ阻害薬耐性株が疑われる状況に限定される。

3. ノイラミニダーゼ (NA) 阻害薬に耐性を示すインフルエンザウイルスによる重症例への 対応

現時点においては NA 阻害薬耐性株によるインフルエンザ重症例は問題になっていないが、今後発生した場合に備えて記載する。

(1) H275Y*変異を有する A(H1N1) pdm09 感染による重症例への対応

近年、わが国においては、H275Y 変異を有する株 (以下 H275Y 変異株) が、A(H1N1) pdm09分離株の $1\sim4$ %を占める 18 。この H275Y 変異では、吸入薬であるザナミビルとラニナミビルへの感受性は保たれているが、オセルタミビルとペラミビルへの感受性が低下している 19 。乳幼児の重症例や人工呼吸管理下の患者においてはザナミビルとラニナミビルの吸入が困難であるので、静注製剤であるペラミビルが選択されるが、H275Y 変異株に対しては、通常の投与方法では効果が期待できない。「小児にペラミビル 10 mg/kg を 1 回投与した場合の血液中および気道中ペラミビル濃度の推移」を基にしたシミュレーションの結果から、「10 mg/kg、1 日 1 回、連日 5 日間投与」により、10 H21 変異株に対する有効気道中濃度が概ね維持されると推定されている(10 ペラミビル投与設計と血中濃度の検討について 10 を参照)。

バロキサビル マルボキシルは細胞培養あるいは動物モデルにおいて H275Y 変異株ウイルスの増殖を抑制する事が確認されており、代替薬として検討される(医薬品インタビューフォームより)。また、オセルタミビル耐性インフルエンザウイルスによるアウトブレイク事例で成人患者に対してバロキサビルを投与し、オセルタミビル投与群に比べて早期に解熱が得られたとする報告がされている ²⁰。

* H274Yの表記もみられるが、これは、A(H3N2) 亜型ウイルスのNA蛋白質のアミノ酸番号をもとにした表記法(N2表記法)であり、A(H1N1) 亜型ウイルスのNA蛋白質の場合は、耐性マーカーのアミノ酸番号はメチオニンから数えて275番目となる。よって、本文では耐性マーカーのアミノ酸番号をH275Yで統一する。

(http://idsc.nih.go.jp/iasr/30/348/pr3483.html)

(2) R292K 変異を有する H7N9 感染による重症例への対応

2013 年以降、中国を中心にヒトへの感染が確認されている H7N9 ウイルスのなかには、ウイルスノイラミニダーゼ(NA)に R292K 変異を有するもの(以下 R292K 変異株)があり、NA 阻害薬への感受性が低下していると報告されている 21,22 。この R292K 変異株は、全ての NA 阻害薬への感受性が低下するが、特にオセルタミビルへの感受性は高度に低下している 22 。各 NA 阻害薬の R292K 変異株に対する 12 1 に 12 2 にの NA 限害薬の R292K 変異株に対する 12 3 に 12 5 にの R292K 変異株に対する 12 5 にの R292K 変異株に対する 12 5 に 12 5 にの R292K 変異株に対する 12 5 にの R292K 変異株に対する 12 5 に 12 5

ナミビルが有効である可能性はあるが、人工呼吸管理下にある重症肺炎例では吸入は困難である。静注製剤であるペラミビルが期待されるが、R292K 変異株に対するペラミビルの IC $_{50}$ 値は $100 \sim 250$ nM 前後と高く 22,23 、ウイルスの増殖を抑制するためには、高濃度のペラミビルを要することが示唆されている 23 。前述のシミュレーションから、通常量(10 mg/kg)を 1 B 2 回、連日投与しても IC $_{50}$ を維持するレベルであり、ウイルス増殖を十分に抑制する気道中濃度は維持されず、抗ウイルス効果を期待できない可能性がある。そのため、NA 阻害薬とは作用機序が異なる抗インフルエンザ薬の使用を考慮する必要がある。

現在、RNA ポリメラーゼ阻害薬に分類されるファビピラビルは、「新型又は再興型インフルエンザウイルス感染症(ただし、他の抗インフルエンザウイルス薬が無効又は効果不十分なものに限る。)」を効能又は効果として承認されている。したがって、H7N9 の R292K 変異株が流行した際には、国による使用についての迅速な判断がなされることを期待する。ただし、ファビピラビルは動物実験で催奇形性が認められたため、妊婦には使用出来ない。また、小児等に対する投与経験はない。キャップ依存性エンドヌクレアーゼ阻害薬のバロキサビル マルボキシルは細胞培養感染モデルにおいて H7N9 の R292K 変異株ウイルスの増殖を抑制する事が確認されており、H7N9 の R292K 変異株に対する選択薬の1つになると思われる。(医薬品インタビューフォームより)。

4. インフルエンザワクチンの推奨

インフルエンザワクチンは、インフルエンザの発症を予防する効果があり、学校での欠席日数を減らす効果も報告されている²⁴。また、ワクチン接種により、インフルエンザによる入院を減らした報告²⁵もある。

昨シーズンは流行がなく感受性者が増えており、新型コロナウイルス感染症が同時に流行する懸念もあることから、日本小児科学会はインフルエンザワクチンの接種を推奨する。

今冬のインフルエンザワクチン

国内の製剤については、平成30年度から株選定プロセスに見直しがあり、国立感染症研究所インフルエンザワクチン株選定のための検討会議で検討された結果が厚生労働省に報告され、その結果をもとに、厚生科学審議会予防接種・ワクチン分科会研究開発及び生産・流通部会の下に設置された「季節性インフルエンザワクチンの製造株について検討する小委員会」で議論の結果、下記の4株に決定された。

2021/22 シーズンのワクチン A/ビクトリア/1/2020 (IVR-217) (H1N1) A/タスマニア/503/2020 (IVR-221) (H3N2) B/プーケット/3073/2013 (山形系統) B/ビクトリア/705/2018 (BVR-11) (ビクトリア系統)

- ・2021/22 シーズンのインフルエンザワクチンの供給量に関しては、製造効率の高かった 昨年度と比較すると少ないが、例年の使用量に相当する程度は供給される見込みである。た だ昨年度よりも遅れたペースで供給されるため、2021 年の 10 月第5週の時点では出荷見 込み量が全体の 65%程度の出荷量にとどまり、11 月から 12 月中旬頃まで継続的にワクチ ンが供給される見込みであると厚生労働省からの通知⁷⁾ が出されている。したがってイン フルエンザワクチンを効率的に使用することが求められ、昨年同様に 13 歳以上は原則 1 回 接種となる。
- ・なお、12 歳以上の小児において新型コロナワクチンとインフルエンザワクチンの接種を行う場合は、同時接種を行うことは出来ないこと、各ワクチンの間隔は2週間あける必要があることに注意が必要である。

<インフルエンザA型・B型に適応のある薬剤の一般的な用量・用法>

作用機序:ノイラミニダーゼ阻害薬

① オセルタミビル 『タミフル[®]』

剤型:ドライシロップ (3%)、カプセル製剤 (75mg)

用量・用法:

幼小児の場合:1回量として2mg/kg(最大量75mg/回)1日2回 計5日間

新生児、乳児の場合:1回量として3mg/kg 1日2回 計5日間

投与対象:体重 2500g 未満の児または生後 2 週未満の新生児に対する安全性は確立していない。

副作用·注意点:消化器症状(嘔気、嘔吐)、異常行動

今シーズン(2020/21)よりオセルタミビルに特化した 10 代の副作用の記載は削除されている。

昨シーズン (2019/20) 添付文書に以下が追記された:出血が現れることがあるので、 患者及びその家族に対して、血便、吐血、不正子宮出血等の出血症状が現れた場合には 医師に連絡するよう説明する。(相互作用) 併用注意:ワルファリン [併用後にプロト ロンビン時間が延長した報告があるので、併用する場合には、患者の状態を十分に観察 するなど注意する (機序不明)]。

② ザナミビル 『リレンザ®』

剤型:吸入粉末剤

用量・用法:投与量:10mgを1日2回吸入、計5日間(成人と同量)

投与対象:吸入可能な患者。ただし、低出生体重児、新生児、乳児又は4歳以下の幼児 に対する使用経験はなく、安全性は確立していない。

副作用・注意点:気管支の攣縮の報告があり、喘息など呼吸器系の基礎疾患がある児には推奨されない。また、本剤は、夾雑物として乳蛋白を含む乳糖水和物を使用しており、乳製品に対して過敏症の既往歴のある患者に投与した際にアナフィラキシーがあらわれたとの報告があり、投与に際しては十分に注意する。(添付文書より)

③ ラニナミビル 『イナビル[®]』

剤型:吸入粉末剤

用法・用量:

- 10 歳未満の場合、ラニナミビルオクタン酸エステルとして 20mg を単回吸入投与する。
- 10 歳以上の場合、ラニナミビルオクタン酸エステルとして 40mg を単回吸入投与する。

投与対象:吸入可能な患者。ただし、低出生体重児、新生児、乳児に対する使用経験はなく、安全性は確立していない。

副作用・注意点:同効の吸入薬のザナミビルにおいて、気管支喘息患者に使用した際に気管支攣縮の報告がみられているため気管支喘息の患者に対してこれらの吸入薬を使用するときは留意すること。また、本剤は、夾雑物として乳蛋白を含む乳糖水和物を使用しており、乳製品に対して過敏症の既往歴のある患者に投与した際にアナフィラキシーがあらわれたとの報告があり、投与に際しては十分に注意する。(添付文書より)

吸入薬としての注意:単回吸入にて治療が終了するため、確実な吸入が求められる。 特に小児については、医療従事者や保護者が吸入を確認するなど、服薬指導が必要である。

剤型:吸入懸濁用 160 mgセット

用法・用量:成人及び小児には、ラニナミビルオクタン酸エステルとして 160 mgを日本薬局方生理食塩液 2 ml で懸濁し、ネブライザを用いて単回吸入投与する。

副作用:慢性呼吸器疾患(喘息等)においてインフルエンザウイルス感染症により気道過敏性が亢進することがあり、気管支攣縮や呼吸機能低下があらわれるおそれがある。(添付文書より)なお、本剤は乳糖水和物を使用しておらず、乳製品に過敏症の既往のある患者でも使用可能である。

④ ペラミビル 『ラピアクタ®』

剤型:静脈内投与製剤(点滴静注で用いる)

用法・用量:小児;通常、ペラミビルとして1日1回10mg/kgを15分以上かけて単回点滴静注するが、症状に応じて連日反復投与できる。一般的な成人量は1回300mg。投与量の上限は、1回量として600mgまでとする。重症例に対しては連日投与が可能。

投与対象:年齢制限は特にないが、低出生体重児、新生児の安全性は確立していない。

キャップ依存性エンドヌクレアーゼ阻害剤

⑤バロキサビル マルボキシル 『ゾフルーザ®』

剤型・規格:

錠剤: 10mg錠:素錠、20mg錠:フィルムコーティング錠

顆粒: 2%分包 (1 包 500mg 中に 10mg 含有)

用法・用量: (添付文書より)

1. 通常、成人及び 12 歳以上の小児には、20mg 錠 2 錠 $\underline{$ 又は顆粒 4 包} (バロキサビル マルボキシルとして 40mg)を単回経口投与する。ただし、体重 80kg 以上の患者には 20mg 錠 4

錠又は顆粒8包(バロキサビル マルボキシルとして80mg)を単回経口投与する。

2. 通常、12歳未満の小児には、以下の用量を単回経口投与する。

体重	用量
40kg 以上	20mg 錠 2 錠 <u>又は顆粒 4 包</u> (バロキサビル マルボキシルとして 40mg)
20kg 以上 40kg	20 mg 錠 1 錠 $\underline{又は顆粒 2 包}$ (バロキサビル マルボキシルとして 20 mg)
未満	
10kg 以上 20kg	10mg 錠 1 錠(バロキサビル マルボキシルとして 10mg)*
未満	

*2020 年 10 月 1 日時点では 20kg 未満の小児に対する顆粒製剤の使用は承認されていない。

使用上の注意事項

本剤は低出生体重児、新生児または乳児に対する安全性は確立しておらず、適切に経口投与できると判断された場合にのみ投与することと添付文書に記載されている。また、他の抗インフルエンザ薬と同様に、添付文書上の使用注意事項として、抗ウイルス薬の投与がインフルエンザウイルス感染症の全ての患者に対しては必須ではないことを踏まえ、本剤の投与の必要性を慎重に検討すること、本剤の予防投与における有効性及び安全性は確立していないこと、細菌感染症に無効であること、投与の有無にかかわらず異常行動に注意を要することが記載されている。禁忌事項として、本剤に対して過敏症の既往のある者が挙げられ、慎重投与を要する対象として重度の肝障害のある者が挙げられている。

なお添付文書に以下が追記された:出血が現れることがあるので、患者及びその家族に次を 説明する:1) 血便、鼻出血、血尿等が現れた場合には医師に連絡する、2) 投与数日後にも 現れることがある。(相互作用) 併用注意:ワルファリン [併用後にプロトロンビン時間が 延長した報告があるので、併用する場合には、患者の状態を十分に観察するなど注意する (機序不明)]。

<ペラミビル投与設計と血中濃度の検討について>

①ペラミビル通常量 (10 mg/kg) を単回投与、②ペラミビル 2 倍量 (20 mg/kg) を単回投与、③ペラミビル通常量 (10 mg/kg) を 1 日 1 回、連日 5 日間投与、④ペラミビル通常量 (10 mg/kg) を 1 日 2 回 (1 日量として 20 mg/kg)、連日 5 日間投与、⑤ペラミビル半量 (5 mg/kg) を 1 日 2 回 (1 日量として 10 mg/kg)、連日 5 日間投与、⑥ペラミビル 2 倍

量(20 mg/kg) 1日1回、連日5日間投与した場合の投与後5日間の血液中および気道中濃度のシミュレーションを行い、H275Y変異株に対して効果が期待されるペラミビルの投与方法を検討した 26 。静注用抗ウイルス薬の PK/PD は% time above IC で表されるとの数理モデルがあることから、各投与シミュレーションにおける% time above IC を算出した。基準とする IC は、ペラミビルの H275Y変異株に対する IC $_{50}$ (28 \pm 7nM) 27 より、Mean+3SDの 50 nM、さらに、IC $_{50}$ を大きく上回る濃度である 100 nM、200 nM、300 nM に設定した。(表3)

その結果、以下のことが明らかになった。

- ① 通常量(10 mg/kg)を単回投与した場合、投与後速やかに血中および気道中の濃度が低下するため、有効な気道中濃度を維持できない。
- ② 2 倍量(20 mg/kg)を単回投与した場合、投与後速やかに血中および気道中の濃度が低下するため、有効な気道中濃度を維持できない。
- ③ 通常量 (10 mg/kg) を 1 日 1 回、連日投与した場合、100 nM 以上の気道中濃度を維持するのは 80.5 時間 (67.1%)、300 nM 以上を維持するのは 58.7 時間 (48.9%)である。
- ④ 通常量 (10 mg/kg) を 1日2回 (1日量として20 mg/kg)、連日投与した場合、100 nM 以上の気道中濃度を維持するのは120時間 (100 %)、300 nM 以上を維持するのは117.4 時間 (97.8 %) である。
- ⑤ 半量 (5 mg/kg) を 1日2回 (1日量として 10 mg/kg)、連日投与した場合、100 nM 以上の気道中濃度を維持するのは 120 時間 (100 %)、300 nM 以上を維持するのは 92.2 時間 (76.8 %) である。
- ⑥ 2 倍量 (20 mg/kg) を 1日1回 (1日量として 20 mg/kg)、連日投与した場合、100 nM 以上の気道中濃度を維持するのは 91.5 時間 (76.3 %)、300 nM 以上を維持するのは 70.4 時間 (58.7 %) である。

これらのシミュレーションの結果から、③の「10 mg/kg、1 日 1 回、連日 5 日間投与」により、H275Y 変異株に対する有効気道中濃度が概ね維持されると考えられる。より確実な効果を得るには、⑤の「5 mg/kg、1 日 2 回、連日 5 日間投与」、さらには④の「10 mg/kg、1 日 2 回、連日 5 日間投与」が良いと考えられるが、添付文書*には記載のない投与方法であるので、所属施設の倫理委員会等の承認と家族の同意が必要である。

*<小児>通常、ペラミビルとして 1 日 1 回 10 mg/kgを 15 分以上かけて単回点滴静注するが、症状に応じて連日反復投与できる。投与量の上限は、1 回量として 600 mgまでとする。

表 3. ペラミビル投与による予想気道中 PK/PD

投与量 投与方法	AUC(nM · hr) ^{a)}	% time > IC (予測値) ⁴ 設定鼻腔中濃度			
		5 mg/kg/回			
1 日 2 回 x 5 日間連続 (12 時間毎)	109104	100 %	100 %	90.7 % (108.9 h)	76.8 % (92.2h)
10 mg/kg/回					
1日1回単回のみ	22743	15.7 % (18.9 h)	13.4 % (16.1 h)	11.1 % (13.3 h)	9.8 % (11.7 h)
1 日 1 回 x 5 日間連続 (24 時間毎)	113439	78.6 % (94.3 h)	67.1 % (80.5 h)	55.6 % (66.7 h)	48.9 % (58.7 h)
1日2回 x5日間連続 (12時間毎)	216254	100 %	100 %	100 %	97.8 % (117.4 h)
20 mg/kg/回					
1日1回単回のみ	44877	17.5 % (30.0 h)	15.3 % (18.3 h)	13.0 % (15.6 h)	11.7 % (14.0 h)
1 日 1 回 x 5 日間連続 (24 時間毎)	223946	87.4 % (104.9 h)	76.3 % (91.5 h)	65.2 % (78.2 h)	58.7 % (70.4 h)

a) AUC、% time>IC: 投与直後から5日(120時間)まで

PK/PD: <u>Pharmacokinetic/Pharmacodynamic</u>, AUC: the area under the curve, IC: 設定鼻腔中濃度

b) 上段: % time>IC 下段 (カッコ内): IC を上回る時間

文献

- 1. Louie JK, Yang S, Samuel MC, Uyeki TM, Schechter R. Neuraminidase inhibitors for critically ill children with influenza. Pediatrics 2013;132:e1539-45.
- 2. Malosh RE, Martin ET, Heikkinen T, Brooks WA, Whitley RJ, Monto AS. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta-analysis of Randomized Controlled Trials. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2018;66:1492-500.
- 3. Wang K, Shun-Shin M, Gill P, Perera R, Harnden A. Neuraminidase inhibitors for preventing and treating influenza in children. The Cochrane database of systematic reviews 2012;1:Cd002744.
- 4. インフルエンザにおける新生児への対応案. at http://jsnhd.or.jp/pdf/20170925theflu.pdf.)
- 5. Hayden FG, Sugaya N, Hirotsu N, et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. The New England journal of medicine 2018;379:913-23.
- 6. Hirotsu N, Sakaguchi H, Sato C, et al. Baloxavir marboxil in Japanese pediatric patients with influenza: safety and clinical and virologic outcomes. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2019.
- 7. Kakuya F, Haga S, Okubo H, Fujiyasu H, Kinebuchi T. Effectiveness of baloxavir marboxil against influenza in children. Pediatrics international: official journal of the Japan Pediatric Society 2019;61:616-8.
- 8. Liu JW, Lin SH, Wang LC, Chiu HY, Lee JA. Comparison of Antiviral Agents for Seasonal Influenza Outcomes in Healthy Adults and Children: A Systematic Review and Network Meta-analysis. JAMA network open 2021;4:e2119151.
- 9. Komeda T, Takazono T, Hosogaya N, et al. Comparison of Hospitalization Incidence in Influenza Outpatients Treated With Baloxavir Marboxil or Neuraminidase Inhibitors: A Health Insurance Claims Database Study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2021;73:e1181-e90.
- 10. Ikematsu H, Hayden FG, Kawaguchi K, et al. Baloxavir Marboxil for Prophylaxis against Influenza in Household Contacts. The New England journal of medicine 2020;383:309-20.
- 11. Gubareva LV, Fry AM. Baloxavir and Treatment-Emergent Resistance: Public Health Insights and Next Steps. The Journal of infectious diseases 2019.
- 12. Takashita E, Kawakami C, Morita H, et al. Detection of influenza A(H3N2) viruses exhibiting reduced susceptibility to the novel cap-dependent endonuclease inhibitor

baloxavir in Japan, December 2018. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2019;24.

- 13. Uehara T, Hayden FG, Kawaguchi K, et al. Treatment-Emergent Influenza Variant Viruses With Reduced Baloxavir Susceptibility: Impact on Clinical and Virologic Outcomes in Uncomplicated Influenza. The Journal of infectious diseases 2019.
- 14. Checkmahomed L, M'Hamdi Z, Carbonneau J, et al. Impact of the baloxavirresistant polymerase acid (PA) I38T substitution on the fitness of contemporary influenza A(H1N1)pdm09 and A(H3N2) strains. The Journal of infectious diseases 2019.
- 15. Jones JC, Pascua PNQ, Fabrizio TP, et al. Influenza A and B viruses with reduced baloxavir susceptibility display attenuated in vitro fitness but retain ferret transmissibility. Proceedings of the National Academy of Sciences of the United States of America 2020;117:8593-601.
- 16. Takashita E, Ichikawa M, Morita H, et al. Human-to-Human Transmission of Influenza A(H3N2) Virus with Reduced Susceptibility to Baloxavir, Japan, February 2019. Emerging infectious diseases 2019;25.
- 17. Sato M, Takashita E, Katayose M, et al. Detection of variants with reduced baloxavir marboxil and oseltamivir susceptibility in children with influenza A during the 2019-2020 influenza season. The Journal of infectious diseases 2021.
- 18. 抗インフルエンザ薬剤耐性株サーベイランス. at https://www.niid.go.jp/niid/ja/influ-resist.html.)
- 19. Gubareva LV, Besselaar TG, Daniels RS, et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015-2016. Antiviral research 2017;146:12-20.
- 20. Fujita M, Matsumoto H, Inafuku Y, Toyama J, Fujita J. A retrospective observational study of the treatment of a nosocomial infection caused by oseltamivir-resistant influenza virus A with baloxavir marboxil. Respiratory investigation 2020;58:403-8.
- 21. Ke C, Mok CKP, Zhu W, et al. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China. Emerging infectious diseases 2017;23:1332-40.
- 22. Zhu W, Zhou J, Li Z, et al. Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2017;22.
- 23. Zhang X, Song Z, He J, et al. Drug susceptibility profile and pathogenicity of H7N9 influenza virus (Anhui1 lineage) with R292K substitution. Emerging microbes & infections 2014;3:e78.

- 24. Jefferson T, Rivetti A, Di Pietrantonj C, Demicheli V. Vaccines for preventing influenza in healthy children. The Cochrane database of systematic reviews 2018;2:Cd004879.
- 25. Talbot HK, Zhu Y, Chen Q, Williams JV, Thompson MG, Griffin MR. Effectiveness of influenza vaccine for preventing laboratory-confirmed influenza hospitalizations in adults, 2011-2012 influenza season. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2013;56:1774-7.
- 26. Sato M, Ito M, Suzuki S, et al. Influenza viral load and peramivir kinetics after single administration and proposal of regimens for peramivir administration against resistant variants. Antimicrobial agents and chemotherapy 2015;59:1643-9.
- 27. Takashita E, Ejima M, Itoh R, et al. A community cluster of influenza A(H1N1)pdm09 virus exhibiting cross-resistance to oseltamivir and peramivir in Japan, November to December 2013. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2014;19.